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Equations describing the motion of a thin layer of an ideal incompressible 
fluid under the action of gravity and surface tension forces are derived. 
These equations are a generalization of the well-known equations of the 
"shallow water" theory Cl]. One of their applications is in the study of 
the motion of a fluid under conditions of weightlessness. Some static and 
dynamic problems are considered within the framework of the equations derived. 

1. We consider the potential flow of an ideal incompressible fluid of 

density p . Let t be time; x, I/, z the Cartesian coordinates in the 

flow region; u, v, w the projections of the fluid velocity on the X, V, 

a axes ; P the pressure; B the constant acceleration due to gravity or 

other mass forces directed opposite to the z-axis. The equations of motion 

and continuity and the conditions of irrotational motion may be written as 

(1.1) 
ut + uux + vuy + wuz + Px J P = 0, 

Ut + uvx + vvy i- WV2 + P, 1 P =o 
Wt + uwx + uwy + wwz i- pr 1 P -I- g = 0, 

ux + uy + wz = 0 
1 

Fig. 1 WY = vz, uz = wx, vr = uy 

(subscripts denote partial derivatives in all 

cases). 

Let the fluid (Flg.1) be bounded below by the stationary floor z= h(x,y) 

and above by the free surface #=f(x,u,t). Let us write the conditions of 
Impermeability of the floor and the dynamic and kinematic conditions on the 

free surface, w = h,u + h,v for 2 = h (2, y) (1.2) 

P = PO - 6 (1 + fr* + f$)-” [fxr (1 + fv’) - 2fxfvfm + flu (1 + fx”>l 

w = ft + fxu + flfv for 2 = f (z, y, t) 

1013 



1014 F.L. Chernous’ko 

where PO is the constant pressure outside the fluid, a is the coefficient 

of surface tension, and the factor appearing with a is the curvature of 

the free surface; It is assumed that the fluid everywhere lies below the 

free surface. 

We shall follow the pattern of reasoning used In [Il.] to derive the "shal- 

low water" equations in the absence of surface tension (another derivation 

Is given in [2]). .First we substitute variables, functions, and constants, 

2 = KG w=Wl8, h = Mi, f = 6F, g = g’ / 8, cr = d I 8 (4.3) 
The dimensionless parameter 6 may be defined as the ratio of a charac- 

teristic dimension along the z-axis (e.g. the average depth of the fluid) to 

the characteristic dimension in the xy-plane. Henceforth, it is assumed to 

be small. Converting to variables (1.3), we reduce Equations (l-l), (1.2) 

to the form 
Wur.+e(u*+uu,+vu,+p,lp)=O (e=W (1.4) 

W~,+e(~,+u~,+~~,+p,/p)=O 

WWI:+e(Wt+uW,+~W‘,+prlp+g')=O 

w~+&(zz,+21&=0, WW==2$ uI;=w,, vx=uy 

W=s(H,u+H,v) Ior C=H(s,y) 

p = po- ci’ (1 + &Fx2+ EF$)-*~* [F, (1 + eFaa) - 2eP,F,F,,+ F,, (1 + eFx2)] 
W=e(F,+F,u+F,v) ror 5- F (2, Y, 4 

The functions sought will be represented as series in the small parameter E 

u=u"+W1+*.., 2)=Z1*+Ev~+ *. . , W=w”+EW~+. I. 

p=pOfepq-. . . , F =F”+eFf-j-. . . (e < 1) (1.5) 

The coefficients of expansions (1.5) and their derivatives with respect 
to t, x; I/, 6 are considered finite as E -4 0 . We substitute (1.5) Into 

(1.4) and equate coefficients of like powers of c . From the zeroth approxi- 

mation we obtain 
WO~O, uyO= 2+zo, u,"= 2ty0 

(1.6) 
P ’ = p. - o’ (F,” + F,,‘) ior f = F” 

Taking Into account (1.5), (1.6) and equating the coefficients of e in 

(1.4) we arrive at Equations 

ut"+ uOUX"+ v"uyo+ pro/p = 0 

v*O + u”vro + v”vyo + pv” j p = 0, Pro + Pg’ = 0 

WC1 + us0 + vu0 = 0 (1.7) 

w1 = H,uO + HyvO for 5=H, W’ zs Fi” + Fzouo + Fy’=v3 for S=P” 

Henceforth we shall limit ourselves to the ffrst nonzero terms of expan- 

slons (1.5). For this reason, in writing (l-7), we have omitted the irrota- 

tlon conditions and the boundary condition for P which contain u', V', P’, 

F’ . From the equation of continuity and the condition at the floor in (1.7) 

we have 
Wl = (HUO), + (Hv"), - 5 @X0 + UYO) (1.8) 
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Substituting (1.8) into the last condition of (1.7), we obtain an equation 
for P 

FtO + [(F" - H) i81~ + [(P” - If) v”ly = 0 w 

The pressure can be determined from the third equation of (1.7) and the 

condition on the free surface in (1.6), 

p" = po -u' (F1up + F,g") - pg' (5 - F") (1.10) 

Llmltlng ourselves to the first nonzero terms in (1.5), we set 

0 
z&=&C, u S UO, w = W/6~6Wf, pzp’, f = 6FzSF” 

Then, taking into account (1.3),(1.10), we make (1.6),(1.7),(1.9) yield 

the following system of equations for the functions z&(2, 9, t), U (Z, $j, t), 

f b, Y, t) : 

vt+uv,+vvu+gfu-((aIp)Af,=O (1. *II) 

ff + [(f -h) ul, + r(r - h) uly = 0, %! = vy 

The Laplacean A, as well as the operators V , dlv , rot are consid- 

ered operative Inthexy-plane in sll cases. By introducing the two-dimensional 

velocity vector V with the components u, u, we can rewrite system (1.11) 

in the form 
vt + (vv) v + v (sf - W-W = 0 

ft+div[(f-~)vl=O, rotv= 0 
(1.12) 

The functions w , P are expressed in terms of v , _7 by expressions 

which follow from (1.8),(1.10), 

w = div (hv) - z div v, p = p. - oAf - pg (z - f) (1.13) 

Equations (1.12) describe the irrotational motion of a fluid under the 

action of gravity and surfaos tension forces when the characteristic depth of the fluid 
is small in comparison with a characteristic dimension (e.g. with the wave- 

length) In the xy-plane. The angles between the floor z = hfr, y) and the 

free surface, respectively, and the horizontal plane are likewise assumed to 

be small, although the amplitude of the waves is arbitrary (the depth can 

change a finite number of times). System (1.12) is nonlinear, although it 

is considerably simpler than the initial system (1.1) , since it contains 

fewer of the functions and independent variables sought. 

Equations of long waves with allowance for surface tension are derived in 
[3] and investigated, for example, in [4f. The equations in [ 31 are valid 
only for small-amplitude plane waves propagating in a single direction, and 
do not degenerate to the 'shallow water" equations for a = 0 . In addition, 
in deriving his equations, the author of (33 assumes the surface tension for- 
ces to be small in comparison with gravity, which obviates the possibility 
of considering the case of weightlessness Q = 0 . 

Equations (l.l2),(1.13) were obtained without these limitations and con- 
stitute direct generalizations of the equations of the first approximation 
of the “shallow water" theor Into which they degenerate for p = 0 . 
For B = 0 , equations (1.12 T 

cl], 
,(1.13) describe the motion of a thin layer of 

a weightless fluid. 

To find the equations of motion of the fluid it is necessary to solve 

system (1.12) under certain initial and boundary conditions, and then to 
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determine w and p from Formulas (1.13). Let D(t) , generally speaklng, 
be the variable projection of the flow region on the xv-plane, and let the 

contour r be the boundary of the region D(t) . As the initial conditions 

for system (1.12) it is necessary to specify at the initial instant t, the 

function .? and the potential solenoidal vector v In the region D(to) . 

If the contour r Is given, two boundary conditions (one of the velocity 

and one for the shape of the free surface) must be specified thereon. If It 

Is not given, three conditions are required. For example, let the flow 

region be bounded by vertical walls (a cylindrical surface with the directrlx 

r ), and let y be the contact angle at the boundaru between the fluid and 

the walls; for applicability of the derived equations; this angle Is assumed 

to be close to & . The conditions on the contour r then become 

vn = 0, nVf = - cos y NN y - 1/@ 
where n is the Inner normal to the contour r . 

2. As an example, let us consider the problem of equilibrium of a dro 
on a plane horizontal wall (Fig.2 'j . 
The contact amle v between the 

Fig. 2 

v, r: I 

I 
I 

7 I -I- 
I 

fluid and wall-is considered small 
(0 g y < I), and the shag cd& F;l&droP 
sufficiently shallow. 
possible to apply Equations (1.12). 
which for the case of equilibrium 
give us 

V (W - aAf) = 0 (2.1) 

Let us make the xv-plane coinci- 
dent with the plane of the wall. Let 
the drop be axisymmetrlcal and let 
its base be the circle x2+ $-'R". 

Equation (2.1) then yields 

[pgf - (a / r) (Cl' = 0 

r = (9 + y")"' 

(...)' = d (...)/ dr (2.2) 

for the shape j(r) of the drop sur- 
face. 

The solution of Equation (2.2) 
depends on three arbitrary constants 
which can be determined from condl- 
tions 

I (R)=O, 1' (R) =--Y 

and the condition of boundedness 
I(O). 

For Q > 0 the solution is expressed in terms of Bessel functions of an 
imaginary argument, 

f(r) 7 
) ~h(R*)--o(r Ima1 9 

R, = R (pg/af” (2.3) 
* 

With the aid of solution (2.3) It is easy to compute the volume v of the 
drop. The relationship betwenn the dimensionless volume vI and dlmenslon- 
less radius fir of the drop may be written as 

R,?lo (R,) - “RJI (R*! v (Pd” 
t‘* ;: 

11 (I{*) 
V *=------- 

nT5?. > 
(2.4) 
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This dependence is depicted by the lower curve In Fig.3 and can serve for 
determining the radius of the drop from a given volume. The following asymp- 
totic formulas hold for both small and large R, : 

v* w VrR,' for R,-,Q, v* - R.= for R, +oo 

The case Q < 0 corresponds to that of a drop clln& 
"5: 

to the lower sur- 
face of a horizontal wall. The solution of Equation (2.2 which we are seek- 
ing and the relationship between the volume and radius of the drop in this 
case are of the form 

R,= R(-pg/#, 

v* = 
2R,J1 VU - ReaJo (R,) 

Jl(W ’ 

Clearly (see upper curve in Flg.3), 
Is the first positive root of Equation 

v* =(-Pg/c)t"(UM (2.5) 

v* - ‘14 R,a for R, + 0 

u*+ m as 
J1 (P) - 0 . 

R)++ p , where LI - 3.8317 
Thus, the dimensionless 

radius of the drop In the case B < 0 cannot exceed p , and with corn lete 
wettabillty (y = 0 , v+- -) we have 3?*= CI . This result is cited In e 
Eliminating y and v+ , from (2.5) for y = 0 , we obtain 

53. 

In the case of weightlessness (67 = 0) from (2.2) we have 

j (r) = y (Rz - P) / 2R, v = ‘IrnyRJ 

The exact shape of the drop in this case Is a sphere. (2.1) can easily 
be used to solve other static problems as well. 

We note that Equation (2.1) cannot be used If the angle between the free 
surface and the horizontal plane Is anywhere large. Such 1s the case, for 
example, for a drop with g < 0 and a sufficiently large u . The shape of 
the drop In this Instance is determined by numerical Integration of the exact 
nonlinear equilibrium equation [5 and 61. The exact dependence v(R) for 
y = 0 given in Cs]. For sufficiently large 0 no equlllbrlum forms exist 
at all. To Investigate the stability of the free surface [7] It Is also 
necessary to proceed from the exact solution of the nonlinear problem. 

3. Let us consider the small vibrations of a fluid layer of constant depth 
over a plane floor. We set h - 0,f = H-j-$ in system (1.12) and llne- 

arlze It, assuming v and $ to be small, 

~~+V(g$--_p-~Ag)=0? rotv=O, $,+Hdivv=O (3.1) 

Applying the operation dlv to the first equation 

tlng v with the aid of the third equation of (3.1), 

equation for the function $(x,y,t) 

qit = gHA$ - (oH I p) AA, 

For 0 = 0, o>o, Equation (3.2) becomes a wave 

It becomes the familiar equation of the vibrations of 

see CSI). 

of (3.1) and ellnlna- 

we arrive at a single 

(3.2) 
equation; for 0 = 0 

an elastic plate (e.g. 

Equation (3.2) admits of solutions on the form of plane progressive waves 

of the form $ = A sin(/cs - at), where A Is the amplitude, UI Is the 

wave frequency, and k Is the wave number. The direction of propagation of 

the wave Is assumed to be the x-axis. Substituting this solution Into Equa- 

tion (3.2), we obtain the.relatlon between UJ and k 
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co2 = kagH + k4aH / p (k=2n/h=o/v,) (3.3) 

where A is the length and v0 is the velocity of propagation of the wave. 

Formula (3.3) can be obtained by taking the limit as H + 0 of the analog- 

ous expression for small capillary-gravitational waves on the surface of a 

fluid of arbitrary depth C 81. 

4. Let us investigate the stationary motions of a fluid over a plane 

floor in the nonlinear formulation. Setting h = 0 , u = u(x) , V=O, 

Y - I(X) , we make (1.11) yield the system of equations 

uux + gfx - op-lfm = 0, (fu), = 0 
Integrating once and eliminating u , we have 

(q2 J2fY + gf - up-lf, = Cl, fu = Q (4.1) 

Here the fluid expenditure P # 0 and C1 are arbitrary constants. Mul- 

tiplying the first equation of (4.1) by fX and Integrating once more, we 

obtain 
(fxY = b / bf)l p cn 

I l f 

f-+i++ 

p (f) = gf3 - 2c,f2 - 2C,f - q2 (4.2) 
where Cz is an arbitrary constant. Thus, the 

a f a bcf function f(x) Is determined by a quadrature. 

,'t' f, z 

Let us consider the possible types of station- 
ary motions for g > 0 , 0 > 0 . Since P(0) < 0, 

t--C 4 

P(m) - + m the polynomial P(f) can have either 
one or threi real positive roots. Each such root 
can have a corresponding progressive flow J'P const. 

a G f Q b f The roots a, b, o of the polynomial P(f) are 

3 
related by the expression a&g -92 . Depending 

4 on the values of the arbitrary constants, the fol- 
lowing cases are possible: 

Fig. 4 1) The polynomial P(f) has one positive root 
c>o. Relation (4.2) between IX and .? is 

depicted in Fig.4, where the number of each curve corresponds to the number 
of the case under consideration. The free surface j'(x) has the minimum 
I=c to either side of which it is symmetrical, increases monotonously and 
tends exponentially to m as x _ f m . 

2) The polynomial P(f) has three distinct positive roots c > b > c > 0. 
Two different types of solutions are possible here (Flg.4): an unbounded 
solution with a minimum / = c similar to Case 1, or a solution periodic 
with respect to n corresponding to the closed curve in Fig.4. The periodic 
solution describes steady-state nonlinear periodic waves, where c Is the 
mlnlmal height of the free surface (wave through) and b is its maximal 
height (wave crest). The wave is symmetrical in shape, both with respect to 
the trough and the crest, the curvature of the wave being larger in the 
trough than at the crest. For given P, 8, o and expenditure q there is 
a two-parameter family of such waves (with the parameters C,, C, or c, b). 

3) The ploynomlal P(f) has multiple roots and cab=:-n>O. The closed 
curve of Case 2 here converges to a point (Fig.4) describing the progressive 
flow f ZE a. In addition, as In Cases 1 and 2, there exists an unbounded 
solution. 

4 
c- I 

The roots cf the polynomial F(j) are subject to the condition 
>a>o. The branches of curve 4, Flg.4 to the right of .? = b have 

corresponding monotonous unbounded solutions In which f varies from b to 
+m. The locp In curve 4 to the left of the point J' = b describes a soli- 

of the trough type. If the trou h (the minimum of the function 
s at the point x = x0 , then f(x,k = a , the function y(x) Is 



symmetric with respect to the point .X - x0 and increases monotonously with 
increasing I.z--.Q~; moreover, f(x)- b as x-*m.For x-f- the flow becomes a 
progressive flow with a velocity u,,= q/b equal, 
abag - q?, to the velocity 

by virtue of the relation 
% of long gravitational waves in a channel 

of depth 0 . 
(ga) 

Let us now pass on to a coordinate system In which the fluid Is at rest 
at infinity. For a given depth b of the fluid at infinity, solitary waves 
of the trough type which form a one-parameter family can propagate along Its 
surface. The velocity of the waves is related to the parameter c (minimal 
depth of fluid) by the expression v0 = (ga'iz. We note that in contrast to 
solitary waves In the absence of surface t ension [l and 23, the solitary 
waves in the case we are presently considering are obtained already In the 
first approximation of the "shallow water" theory. 

The cited solutions differ from the ones published earlier 133 by the fact 
that they were obtained from the first approximation of the "shallow water" 
theory, but without the imposition of limitations on the amplitude of the 
wave and on the relationship between the gravity and surface tension forces. 

For the case of solitary wave (x 0 is the trough coordinate), we set 

J'(f)=g(f--)(b-~f)2, q2= db2g 

z--o= [o/@g)l"=L f= brl (o<a/b=mg1) 
In (4.2). 

We then obtain 

(dq I di)2 = q-l (1 - rl)2 (q - m), 9 (0) = m 

for the dimensionless shape of the wave n(5) . 
The shape of the wave is determined from (4.3) by integration 

(4.3) 

The results of numerical calculation of the wave shape In accordance with 
(4.3) are depicted on Flg.5, where the 
numbers by the curves stand for m ; the 

I curves are symmetric with respect to the 
axis 5=0. 

For a = 0 the types of waves de- 
scribed above are not present. In the 
case of weightlessness (B = 0), depend- 
ing on the constants C,, Cz , the poly- 
nomial P(J) can have from zero to two 
positive roots. Equation (4.2) then 
has either no solutions at all, or an 
unbounded solution (analogously to Case 
l), or else a solution of the periodic 
wave type. Moreover, probressive waves 
can correspond to positive roots of the 
polynomial P(f) . 

D 2 4 I!6 In conclusion we note that the solu- 
tions of Equations (1.12) approximate 

Fig. 5 the.exact solutions of initial system 
$1.1) only If the assumptions of the 
shallow water" theory are fulfilled 

for them. The method used to construct the solution (Formulas (1.3),(1.5)) 
Implies that the functions f , h and their derivatives with respect to 
t, x, y must be small quantities of the order of ~=E'/z. Here b is the 
ratio of the characteristic depth of the fluid to a characteristic dlmenslon 
In the xv-plane. Thus, a solution describing a solitary trough-type wave is 
valid provided that b < [c/(pg) l”z. The wave amplitude characterized by the 
number m can be arbitrary (0~~ Q I). 
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